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Processes Using Fourier-Cosine Series

Geng Deng, PhD, CFA, FRM∗ Tim Dulaney, PhD, FRM†,‡

Craig McCann, PhD, CFA§ Mike Yan, PhD, FRM¶

April 1, 2014

Abstract
Equity-Indexed Annuities (EIAs) are deferred annuities which accumulate value over time

according to crediting formulas and realized equity index returns. We propose an efficient al-
gorithm to value two popular crediting formulas found in EIAs – Annual Point-to-Point (APP)
and Monthly Point-to-Point (MPP) – under general Lévy-process based index returns. APP
contracts observe returns of referenced indexes annually and credit EIA accounts, subject to
minimum and maximum returns. MPP contracts incorporate both local/monthly caps and
global/annual floors on index credits. MPP contracts have payoffs of a “cliquet” option.

Our algorithm, based on the COS method (Fang and Oosterlee, 2008), expands the present
value of an EIA contract using Fourier-cosine series, and expresses the value of the EIA con-
tract as a series of terms involving simple characteristic function evaluations. We present
several examples with different Lévy processes, including the Black-Scholes model and the
CGMY model. These examples illustrate the efficiency of our algorithm as well as its versatil-
ity in computing annuity market sensitivities, which could facilitate the hedging and pricing
of annuity contracts.

1 Introduction

Equity-Indexed Annuities (EIAs) are deferred annuities which credit interest to the account and
determine other benefits associated with the annuity according to the evolution of one or more
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underlying equity indexes operating through a crediting formula.
EIAs specify a minimum rate of return and the potential for further gains depending on the

linked index or indexes. EIAs accumulate credits in an account value during a “deferral period”
and then after the end of the deferral period the account value can be cashed out or annuitized
during the “annuitization period”.

Rather than simple direct exposure to stock market returns, EIAs generally use complex cred-
iting formulas to determine annual credits and, eventually, the amount that is available to be
annuitized. The common point-to-point crediting formula can be further differentiated by the
frequency that the returns are observed:

• Annual Point-to-Point (APP) contracts observe percentage changes in the linked index level
or levels annually and credit investors’ account values subject to an annual floor and cap. If
the index return is below a guaranteed minimum rate, this minimum rate is credited.

• Monthly Point-to-Point (MPP) contracts observe percentage changes in the index levels
monthly. On each policy anniversary, the monthly capped index returns for the twelve
preceding months are summed to produce the annual crediting rate. The greater of this rate
and the guaranteed minimum rate specified by the contract is then applied to the account
value.

APP contracts have the payoff of plain vanilla European options annually. MPP contract pay-
offs are path-dependent within each contract year. In this paper, we advocate a unified valuation
approach for both APP and MPP type contracts.

EIA crediting formulas have been studied previously in literature. Tiong (2010) values several
EIA types, including point-to-point, using Esscher transforms and assuming geometric Brownian
motion. Lee (2003) constructs and values alternative EIAs with barrier options. Lin and Tan
(2003) provide pricing formulas for several types of EIAs using an asset price that follows geometric
Brownian motion with stochastic interest rates. Jaimungal (2004) develops closed-form expressions
for the prices of point-to-point EIAs assuming the underlying asset follows a – Variance Gamma
(VG) process.1 Jaimungal and Young (2005) explore the effect of heavy-tailed asset returns on
the valuation of EIAs. Gaillardetz and Lin (2006) study the effect on the valuation of EIAs of
dropping the usual assumption that mortality risk can be diversified. Boyle and Tian (2008)
apply constraints based on investor preferences to provide optimal EIA contract designs from the
investor’s prospective. Kijima and Wong (2007) include the effect of stochastic interest rates using
an extended Vasicek model for the valuation of ratchet EIAs. Yuen and Yang (2010) find that a
trinomial tree method can be efficient when valuing EIA’s with embedded Asian options using a
regime-switching model with stochastic interest rates and volatility.

MPP contracts specify a minimum return at contract anniversaries while applying local caps
to each monthly return. Cliquet options, cited by Wilmott (2002) as “the height of fashion in

1 There is some discrepancy between the European call option valuation formula in the literature. See Madan et al.
(1998), Jaimungal (2004), and Ballotta (2010) for three examples.
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the world of equity derivatives,” are solved using an adaptive partial differential equation method
within a constant volatility environment. Windcliff et al. (2006) describe several numerical issues
that arise when valuing cliquet options. More recently, Madan and Shoutens (2013) study the
dynamics of market prices for a sample of cliquet options and find that call options can be used
as effective hedges in certain cases.

Bernard et al. (2011) show that the marketing materials for EIAs embedding cliquet options
present overly optimistic scenarios, that the products tend to underperform in turbulent mar-
kets, and that the specific EIAs studied were overpriced by approximately 6.5%. Bernard and
Boyle (2011) illustrate that insurers can reduce their exposure to volatile market conditions by
diversifying their offering of EIAs.

Our contribution to the growing EIA literature is our implementation of an option pricing
methodology that is applicable generally to any (exponential) Lévy model of asset returns with
a closed-form characteristic function. The generality of this methodology allows researchers and
practitioners to isolate the effects of model peculiarities and more efficiently compute numerical
valuations and market sensitivities (Greeks).

The COS method valuation methodology – a numerical approximation based upon the Fourier-
cosine series expansion – was developed by Fang and Oosterlee (2008). Fang and Oosterlee (2008)
show that the convergence rate for this method is exponential with linear computational complexity
in most cases. The method was then used to price early-exercise and discrete barrier options in
Fang and Oosterlee (2009), Asian options in Zhang and Oosterlee (2013), and Bermudan options
in the Heston model in Fang and Oosterlee (2011). Our paper applies this Fourier-cosine series
methodology to the valuation of APP and MPP annuities.

We apply two levels of the COS method in our valuations. The first application expands the
annuity value as a series of terms based on valuations of the characteristic function of ‘global
capped returns.’ An advantage of the COS method, or of the separation feature in the method,
is that all information about the return distribution is derived from the characteristic function;
while the structural information of the EIA contract, such as caps and floors, are contained in the
Fourier coefficients. Our methodology facilitates the application of various characteristic functions
to value the EIA contract efficiently.

The second application of the COS method is to construct the characteristic function of the
capped local returns, which is also expanded as a series of terms based on the characteristic function
of the uncapped local returns. As in the first level application of the COS method, information
about the local cap is contained in the coefficients of the series. The methodology simplifies the
computation of Greeks for EIA contracts and, therefore, helps issuers more easily understand and
hedge their liabilities.

The approach advocated here is generally applicable and efficient for EIAs and EIA Greeks
valuation in any Lévy based model. We provide examples of various Lévy models, including the
Black-Scholes model and the CGMY model of which the Variance Gamma (VG) model is a special
case.
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Our paper is arranged as follows. Section 2 specifies the APP and MPP crediting formulas.
Section 3 introduces the COS method and develops a two-level application to be used to value the
EIA contract. Section 4 introduces an alternative approach, values Greeks and implements several
Lévy process models. Section 5 provides numerical results and an analysis of the efficiency of our
proposed algorithm.

2 Point-to-Point Equity-Indexed Annuities

On contract anniversaries, EIAs credit the account value of the contract holder with payments
based on predetermined crediting formulas.2 APP specifies an annual cap (c) and floor (g) that
are applied to the index returns. Let S(t) be levels of the underlying index and K be the initial
annuity account value at t = 0. At the end of one year (T = 1), the accumulated account value is

vAPP (D) = K max(1 + g, 1 +D) = K max (1 + g, 1 + min(c, RT )) . (1)

where RT is the annual index return, defined as

RT =
S(T )− S(0)

S(0)
. (2)

Here the guaranteed minimum return (g) acts as a floor for the time period. The new return
variable

D = min(c, RT ),

represents a capped annual return. In the analysis that follows, we will directly model the charac-
teristic function of the return variable D.

The second crediting formula, MPP, calculates annual account credits based on the monthly re-
turns of the underlying index. First, let us define the monthly observation dates t0 = 0, t1, . . . , t12 =
1 satisfying tj − tj−1 = ∆ = 1

12
, for j = 1, . . . , 12. The monthly index returns Rj are thus defined

as

Rj =
S(tj)− S(tj−1)

S(tj−1)
, for j = 1, . . . , 12. (3)

At the end of one year, the accumulated account value is

vMPP (D) = K max(1 + g, 1 +D) = K max

(
1 + g, 1 +

12∑
j=1

min(c, Rj)

)
, (4)

where c is a monthly return cap (not annualized). For MPP contracts, the cap is sometimes
referred to as a “local cap” since the monthly returns are capped prior to applying the guaranteed

2 Almost all EIA contracts include an annual reset feature. This feature guarantees that each non-negative annual
return is locked in.

4



c©2014 SLCG Efficient Valuation of Equity-Indexed Annuities . . .

minimum return – sometimes referred to as the “global floor.” Here the capped return variable
becomes

D =
12∑
j=1

min(c, Rj).

Note that the range of the variable D is (−12, 12c], since Rj is bounded below by -1.
The present value of the annuity contract at time t = 0 (under the risk neutral measure Q) is

discounted expected payoff

PVAPP = e−r̂TEQ [vAPP (D)] = e−r̂T
∫ ∞
−∞

vAPP (y)fD(y)dy, (5)

and similarly, for MPP
PVMPP = e−r̂TEQ [vMPP (D)] , (6)

where r̂ is an insurer rate reflecting the credit risk of the issuer in light of any state guarantees, and
fD(y) is the probability density function (PDF) of the return variable D under the risk-neutral
measure Q.

To present a unified approach to both “APP” and “MPP,” we introduce n as the number of
observation periods. The capped return D is rewritten as

D =
n∑
j=1

min(c, Rj). (7)

APP uses a single annual observation period (n = 1) and MPP uses monthly observation periods
(n = 12). In the following section, we will drop the subscripts “APP”and “MPP” for convenience.

3 Valuation Methodology

3.1 Introduction to the COS method

The key idea behind the COS method is to project the integral involving a density function
– see Equation (5) – of a random variable onto the space spanned by a Fourier-cosine basis

{cos(kπ(y−a)
b−a )|k = 0, 1, 2, 3, . . .}. This relies on the fact that the density function as well as the

component payoff function in the integral form can both be spanned by the Fourier-cosine basis,
on a truncated range [a, b]. More details of the method and its convergence analysis can be found
in Fang and Oosterlee (2008).

The expected payoff of a financial instrument, before any discount, is generally given by the
integral form

P =

∫
R
v(y)f(y)dy. (8)
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Where v(y) is a payoff function determined by the structure of the financial instrument. The COS
method applies three approximations to this payoff calculation.

1. Compactly Supported Approximation: The first step is to truncate the integral region from
R to [a, b] then

P1 =

∫ b

a

v(y)f(y)dy. (9)

In order to minimize the truncation errors, we choose the a and b such that the density
function f(y) concentrates its mass inside [a, b].

Now we expand the functions f(y) and v(y) using the Fourier-cosine basis such that

P1 =

∫ b

a

v(y)f(y)dy =
b− a

2

∞∑
k=0

′Ak · Vk (10)

∑′ indicates that the first term in the summation has a weight of one half. Ak are the Fourier-
cosine series expansion coefficients for the density function f(y) and Vk are the Fourier-cosine
series expansion coefficients for v(y) over the same interval [a, b] ∈ R:

f(y) =
∞∑
k=0

′Ak cos

(
kπ
y − a
b− a

)
,

v(y) =
∞∑
k=0

′Vk cos

(
kπ
y − a
b− a

)
.

Using orthogonality, Ak and Vk take the form

Ak =
2

b− a

∫ b

a

f(y) cos

(
kπ
y − a
b− a

)
dy =

2

b− a
Re

{∫ b

a

f(y)eikπ(
y−a
b−a )dy

}
; (11)

Vk =
2

b− a

∫ b

a

v(y) cos

(
kπ
y − a
b− a

)
dy. (12)

For a general setting, Fang and Oosterlee (2008) recommend using [a, b] covering ± 10 times
the standard deviation of the underlying random variable centered on the mean of the random
variable, to reduce the approximation error between P and P1.

2. Finite Frequency Approximation: When N is sufficiently large, we can approximate P1 with
the P2 below by discarding the tail terms,

P2 =
b− a

2

N−1∑
k=0

′Ak · Vk. (13)
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The convergence of the sequence depends on the smoothness of the density function. Fang
and Oosterlee (2008) state that if the function is smooth, continuous, and without singularity,
exponential convergence is attained – otherwise, an algebraic index of convergence is attained.

In the general application of the COS method, it is important to determine the optimal
size of the truncated region [a, b]. One cannot choose an arbitrage large domain [a, b] to
minimize the first level error |P −P1|. Since the larger the domain, the more number of COS
expansion terms is needed to get a predetermined second level error |P1−P2|. Hence it need
more resources to calculate the coefficients and the summation.

3. Characteristic Function Approximation: Ak can be written in an equivalent form using the
partial characteristic function of f(x).

Ak =
2

b− a
Re

{
φab
(

kπ

b− a

)
e
−ikπa
b−a

}
, (14)

where

φab(u) =

∫ b

a

eiuyf(y)dy (15)

is close to the characteristic function but the domain is limited to [a, b]. This final approxi-
mation replaces φab(u) with the true characteristic function,

φ(u) :=

∫
R
eiuyf(y)dy.

This replacement results in the approximation of the Fourier series coefficients Ak

Ãk ≈
2

b− a
Re

{
φ

(
kπ

b− a

)
e
−ikπa
b−a

}
.

The approximate payoff function is then given by

P3 =
b− a

2

N−1∑
k=0

′Ãk · Vk,

and the error |P2 − P3| depends on the size of domain [a, b].

Using each of the above approximations and simplifications, the COS method payoff takes the
form

P3 =
N−1∑
k=0

′Re

{
φ

(
kπ

b− a

)
e
−ikπa
b−a

}
· Vk. (16)

Once the Fourier series of the payoff function has been determined, the computation of the payoff
for any model with a defined characteristic function is easily computed with Equation (16).

The COS method features an important “separation” property: the payoff information (EIA
structural design parameters) is contained in the Fourier coefficients Vk; and the distribution
information is contained in the characteristic function φ(u).

7
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3.2 The First Level COS expansion

The present value of the annuity contract is given by an integral of the payoff function with the
PDF of the capped return variable D – see Section 2. Applying the COS method to approximate
its value results in the following expression

PV = e−r̂T
∫
v(y)fD(y)dy

= e−r̂T
∫
K max(1 + g, 1 + y)fD(y)dy

= e−r̂T
N−1∑
k=0

′Re

{
φD

(
kπ

b− a

)
e
−ikπa
b−a

}
· Vk. (17)

The payoff function v(y) = K max(1 + g, 1 + y) and the Fourier-cosine series coefficients Vk are
given by

Vk =
2

b− a

∫ b

a

K max(1 + g, 1 + y) cos

(
kπ
y − a
b− a

)
dy. (18)

Vk can be valued by elementary integrations. In order to simplify the form of Vk, first introduce
two functions

χk(c, d) :=

∫ d

c

y cos

(
kπ
y − a
b− a

)
dy and ψk(c, d) :=

∫ d

c

cos

(
kπ
y − a
b− a

)
dy. (19)

These elementary integrals have the following expressions

χk(c, d) =


[
sin
(
kπ d−a

b−a

)
kπd
b−a − sin

(
kπ c−a

b−a

)
kπc
b−a

+ cos
(
kπ d−a

b−a

)
− cos

(
kπ c−a

b−a

)] (
b−a
kπ

)2 , k 6= 0;

1
2
(d2 − c2), k = 0.

(20)

and

ψk(c, d) =

{ (
sin
(
kπ d−a

b−a

)
− sin

(
kπ c−a

b−a

))
b−a
kπ
, k 6= 0;

d− c, k = 0.
(21)

Vk is thus expressed in terms of χk and ψk as

Vk =
2K

b− a
(χk(g, b) + ψk(a, b) + gψk(a, g)) . (22)

assuming a < g < b.
This section demonstrated how to compute the coefficients V (k) in the payoff Equation (17).

In the following section, we will show how the characteristic function of the capped return variable
D is computed. Again, we directly use the COS method to construct the characteristic function.
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3.3 Second Application of the COS Method

First, by introducing a return variable Cj = min(c, Rj), the capped return variable D can be
rewritten as

D =
n∑
j=1

Cj.

Since the {Cj}j=1,...,n are independent and identically distributed random variables, the character-
istic function of D is simply a product of the characteristic functions of Cj

φD(u) = φnC(u).

Here, we drop the subscript j to reflect the fact that φCj(u) are identical. In our second application,
we apply the COS method to construct the characteristic function φC . Note that the characteristic
function is also defined in an integral of the form

φC(u) := E[eiuC ] = E
[
eiumin(c,R)

]
= E

[
eiumin(c,eX−1)

]
=

∫
R
eiumin(c,ey−1)fX(y)dy, (23)

where Xj is the log-return Xj = log (S(tj)/S(tj−1)). The holding period return Rj is related to
the log-return by

Rj = eXj − 1.

This integral form invites a second application of the COS method. In particular, approximating
the characteristic function with the COS method, we find that

φ̃C(u) :=
Ñ−1∑
k=0

′Re

{
φX

(
kπ

b̃− ã

)
e
−ikπã
b̃−ã

}
· Ṽk(u) (24)

where

Ṽk(u) =
2

b̃− ã

∫ b̃

ã

eiumin(c,ey−1) cos

(
kπ
y − ã
b̃− ã

)
dy

=
2

b̃− ã

[
ψk

(
log(1 + c), b̃

)
eiuc + e−iu

∫ log(1+c)

ã

eiue
y

cos

(
kπ
y − ã
b̃− ã

)
dy

]
, (25)

and φX is the characteristic function of the underlying asset return model. Generally speaking,
there need not be a correspondence between the ranges [a, b] and [ã, b̃] or the number of terms in
the expansions N and Ñ in the two separate applications of the COS method.

9
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For convenience, we define a function

γ̃k(c, d, u) =

∫ d

c

eiue
y

cos

(
kπ
y − ã
b̃− ã

)
dy,

so that

Ṽk(u) =
2

b̃− ã

[
ψ̃k

(
log(1 + c), b̃

)
eiuc + e−iuγ̃k (ã, log (1 + c) , u)

]
. (26)

Unfortunately, γ̃k(c, d, u) does not have a closed-form expression. As a result, φ̃C(u) takes only
discrete input values u ∈

{
kπ
b−a |k = 0, 1, . . . , N − 1

}
. A matrix of N × Ñ must be computed for

this valuation. This matrix, U(k, k′), is defined as

U(k, k′) = Ṽk′

(
kπ

b− a

)
, (27)

for k = 0, 1, . . . , N − 1 and k′ = 0, 1, . . . , Ñ − 1.
Summarizing all the steps above, the present value of the annuity contract is

PV = e−r̂T
N−1∑
k=0

′Re

{
φ̃nC

(
kπ

b− a

)
e
−ikπa
b−a

}
· Vk. (28)

Vk is derived in Equation (22) and the characteristic function φ̃C(u) is defined in Equation (24).
To further value φ̃C(u), we need to compute Ṽk(u) via Equation (26) and using corresponding
characteristic function φX of logarithmic return of index.

4 Application to Lévy Processes

4.1 Alternative One Level COS Solution for APP

The two-level COS application is generally applicable for APP and MPP contracts. However,
due to the discontinuity of the underlying PDF of the capped return variable, D, on the upper
boundary, the COS method converges algebraically and usually requires a large number of basis.3

So instead of using the two level COS method, in APP we recommend to model the return variable
X directly using COS method.

3 This discontinuity of the PDF function on the upper boundary also exists for the MPP contracts, however, it
causes little trouble in the real world compared to the APP contracts. In MPP the probability that D reaches its
upper limit, 12c, is tiny. When D = 12c, it means the EIAs obtain the cap return every month. This probability
is around 0.8× 10−5 using the parameters in our simulations (see Section 5.1). While in APP, the probability of
D reaches its upper limit c is relatively large.

10
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Recall the following relationship:

D = min(c, R) = min(c, eX − 1).

The annuity’s value is written in terms of the characteristic function of the return variable X using
the COS method

PV = e−r̂T
∫
K max(1 + g, 1 + y)fD(y)dy

= e−r̂T
∫
K max(1 + g, 1 + min(c, y))fR(y)dy

= e−r̂T
∫
K max(1 + g, 1 + min(c, ey − 1))fX(y)dy

= e−r̂T
N−1∑
k=0

′Re

{
φX

(
kπ

b− a

)
e
−ikπa
b−a

}
· V̂k. (29)

Here we use the fact the payoff function v̂(y) = K max(1 + g, 1 + min(c, ey − 1)). Following the
general rule in the COS method, we have

V̂k =
2

b− a

∫ b

a

v̂(y) cos

(
kπ
y − a
b− a

)
dy

=
2

b− a

∫ b

a

K max(1 + g, 1 + min(c, ey − 1)) cos

(
kπ
y − a
b− a

)
dy

=
2K

b− a
(ψk(a, b) + ψk(c, b) + ψk(a, g)− ψk(log(g + 1), log(c+ 1))

+ϕk(log(g + 1), log(c+ 1))), (30)

where we introduce a new function ϕk(c, d) with closed form derived directly via elementrary
calculus again:

ϕk(c, d) :=

∫ d

c

ey cos

(
kπ
y − a
b− a

)
dy

=
1

1 +
(
kπ
b−a

)2

[
cos

(
kπ
d− a
b− a

)
ed − cos

(
kπ
c− a
b− a

)
ec

+
kπ

b− a
sin

(
kπ
d− a
b− a

)
ed − kπ

b− a
sin

(
kπ
c− a
b− a

)
ec
]
. (31)

4.2 Alternative φC(t) Formulation

Instead of using the (second level) COS method to construct the characteristic function D, there
are alternative ways to compute the characteristic function. Bernard and Li (2012) propose using

11
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the probability distribution of R,

φC(u) = E[eiuC ] = e−iu
(

1 + iu

∫ 1+c

0

eiuxQ(R ≥ x− 1)dx

)
. (32)

The characteristic function φC(t) can be rearranged in terms of X.

φC(u) = e−iu
(

1 + iu

∫ 1+c

0

eiuxQ(X ≥ log(x))dx

)
= e−iu

(
1 + iu

∫ 1+c

0

eiux(1− FX(log(x))dx

)
. (33)

The general form of the cumulative distribution function, FX(x), is (Bernard and Li, 2012).

FX(x) =
eax

2π

∫
eiux

φX(ia− u)

a+ iu
du. (34)

The drawback of deriving the characteristic function φC(t) using Equation (33) and Equation
(34) is the double-integral calculation therein. For the Black-Scholes model, the characteristic
function in Equation (33) could be simplified and provides an accurate valuation of the function.
For other general Lévy process based models, evaluation of the double-integral is not practical.
In Section 5.1, we use this alternative approach in the Black-Scholes model to test the rate of
convergence and perform error analysis for the two levels of the COS method.

4.3 Greeks

The separation property of the COS method means that all of the dynamic information about the
underlying price process is contained within the characteristic function. As a result, any sensitivity
to market conditions can be computed as a derivative of the characteristic function. For example,
in the Black-Scholes setting, the sensitivity to volatility (vega) is given by

∂PV

∂σ
= e−r̂T

N−1∑
k=0

′Re

{
nφ̃n−1

C

(
kπ

b− a

)
∂φ̃C
∂σ

(
kπ

b− a

)
e
−ikπ
b−a

}
· Vk. (35)

where Vk is independent of σ since Vk encodes only information about the EIA payoff structure.
Further, since Ṽk is also independent of σ, we can evaluate the partial derivative of the characteristic
function as

∂φ̃Cj
∂σ

(u) =
Ñ−1∑
k=0

′Re

{
∂φX
∂σ

(
kπ

b− a

)
e
−ikπ
b−a

}
· Ṽk(u). (36)

This separation property reduces the complexity of determining sensitivities to linear combinations
of partial derivatives of the characteristic function.
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4.4 Black-Scholes Model

We will illustrate how to apply the method described above within several Lévy based models. The
first example is the Black-Scholes (BS) model, under which, the index level follows a geometric
Brownian process

dSt
St

= (µ− q)dt+ σdWt, (37)

where Wt is a Brownian process. The monthly return Rj follows a shifted lognormal distribution
Rj = eXj − 1 where the monthly log-return Xj is a normally distributed random variable. Under
the risk-neutral measure Q, the monthly return (over time interval ∆) is given by

X ∼ N ((r − q − σ2/2)∆, σ2∆). (38)

Let mX = (r−q−σ2/2)∆ and σX = σ
√

∆ denote the mean and standard deviation of the random
variable X. The characteristic function for the Black-Scholes model is then given by

φX(u) = eitmX−
1
2
u2σ2

X . (39)

and
∂φX(u)

∂σ
= (−iuσ∆− u2σ∆)eitmX−

1
2
u2σ2

X . (40)

Bernard and Li (2012) have directly computed φC(u) using the alternative method in Section 4.2

φC(u) = E
[
eiuC

]
= e−iu

(
1 + iu

∫ 1+c

0

eiuxN

(
mX − log(x)

σX

)
dx

)
. (41)

Taking the partial derivative with respect to σ reveals an expression for vega in the Black-Scholes
model given in Equation (4.6) of Bernard and Li (2012).

4.5 CGMY Model

The CGMY process, introduced by Carr et al. (2002), generalizes the Black-Scholes model to
include pathwise discontinuities. The CGMY Lévy density is given by

k(x) =

{
C e−G|x|

|x|1+Y , x < 0;

C e−M|x|

|x|1+Y , x > 0.
(42)

The extended CGMY model includes an orthogonal diffusion component and has a characteristic
function given by

φX(u) = exp (iu [(r − q + ω)∆])× φCGMY (u,∆) (43)

13
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where the CGMY characteristic function takes the form

φCGMY (u,∆) = exp

{
∆

∫
R
(eiux − 1)k(x)dx

}
= exp

{
∆CΓ(−Y )

[
(M − iu)Y −MY + (G+ iu)Y −GY

]}
(44)

and the convexity correction is

ω = − 1

∆
lnφCGMY (−i,∆). (45)

The variance gamma (VG) model is a special case of the CGMY model with

C =
1

ν
, G =

2√
θ2ν2 + 2σ2ν + θν

, M =
2√

θ2ν2 + 2σ2ν − θν
, and Y = 0. (46)

To be explicit, the VG model has the characteristic function

φV G(u,∆) =

(
1− iθνu+

1

2
σ2νu2

)−∆/ν

. (47)

For more information about the use of Lévy processes in finance, see Schoutons (2003).

5 Numerical Examples

In this section, we illustrate our methodology with both APP and MPP crediting formulas. We
pay special attention to convergence speed and error analysis when setting parameters of the
COS method. Although we present applications to the one-year APP and MPP, generalization to
multiple years is trivial.

5.1 Black-Scholes Example

5.1.1 Annual Point-to-Point

In APP contracts, the return variables X, R and D are all annual return variables. The rate
of convergence of the second level COS method is dependent on the smoothness of the density
function of the annual return X and exponential convergence is typically achieved. We found
numerically that the error is well-controlled for Ñ ≤ 100 number of terms. However, the first
level COS method uses the density function of capped return variable D = min(c, eX − 1) which
only converges algebraically. In our test, as many as 500 terms may be required to achieve similar
accuracy at the second level of the COS method. In practice, we recommend using the alternative
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one-level COS approach in Section 4.1 to handle the APP type contracts. Moreover, there is no
need to perform a pre-calculation matrix in the one-level COS method.

The parameters used for the Black-Scholes model in our example are as follows: the risk free
rate r = 3%, the dividend yield q = 1%, the volatility σ = 20% and the insurer rate r̂ = 5%. For
the EIA contract, we set minimum guaranteed return for one year g = 3%, with an annual cap
c = 8%. The initial EIA investment is assumed to be K = $1, 000. The choice of parameters used
in the COS method [a, b] and N warrants further discussion.

Fourier expansion relies on the annual return X, which follows a normal distribution with
mean r− q and volatility σ, therefore, according to suggestions by Fang and Oosterlee (2008) the
truncated range [a, b] should be set to [r− q− 10σ, r− q+ 10σ], or roughly [−10σ, 10σ]. Using the
default σ = 20%, we eventually set the truncated range [a, b] = [−2, 2].

To compute an accurate reference value for comparison, we used a large number of terms
(N = 200). We find decaying error as N increases, and the calculation error as a function of N is
presented in Figure 1.

Figure 1: Annual point-to-point (APP) equity-indexed annuity estimation error within
the Black-Scholes model using the COS method.
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Using roughly N = 30 we achieve an accuracy on the scale of 10−5. The error decreases further
with increasing N and for N ≥ 50 the error is at the 10−8 level.

In Figure 2, we illustrate the dependence of the EIA value and vega on the volatility σ of the
underlying index in the Black-Scholes model. The range of volatility used for testing purposes
is 10% to 40%. For the COS method, we varied the range [a, b] as a function of volatility levels
[−10σ, 10σ]. As a comparison, we also computed the EIA value and vega using Monte Carlo
simulations with 10,000 replications. Since vega represents changes of the EIA value with respect
to changes in the volatility parameter σ. To obtain a better accuracy in our simulation of vega,
we fixed a common random seed in the simulations. For a given volatility σ, vega is computed as
the changes in the annuity value given an infinitesimal change in the volatility σ ± κσ, where κ is
a small value.
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Figure 2: Annual point-to-point (APP) equity-indexed annuity value and vega
estimation within the Black-Scholes model using the COS method.
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(a) Value estimation error
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(b) Vega estimation error

Although the behavior of the two numerical approximations agrees quite well, the results of the
Monte Carlo simulations contain much more noise than the smooth results of the COS method.
This is despite the fact that 10,000 simulations are used for the Monte Carlo results and only 50
terms are used for the COS method.

5.1.2 Monthly Point-to-Point

We use the two-level COS method in the Black-Scholes model to value a MPP with n = 12 for
12 observation periods and a monthly cap of c = 2%. Since Xj is the monthly return variable

with a normal distribution, we used the range
[
ã, b̃
]

= [−10σ/
√
n, 10σ/

√
n]. In preparation for

the volatility dependence illustration where σ = 10% − 40%, we fixed the range [ã, b̃] = [−1, 1]
calculated by using the maximum volatility 40%.

We find that 100 for both N and Ñ provide good accuracy. Therefore, the two-level COS
method relies on the calculation of a 100 × 100 matrix U (Equation (27)) that depends on the
monthly cap, c, and on the interval, [a, b].4

Since the capped return D =
∑12

j=1 Cj =
∑12

j=1 min(c, eXj − 1) has a smaller volatility than the
annual return, we use a = −10σ = −4 and b = nc = 0.24 for the first level of the COS method.
(Note that as we point out before, D’s domain is [−n, nc].) To show the convergence rate as a
function of N , we use the Black-Scholes characteristic function in Equation (41) instead of the

4 Calculation of these matrix elements takes approximately 90 seconds on an i7 machine with 8G of RAM. Further
gains in efficiency can be realized by using parallel computing tools.
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second application of COS method and vary the number of terms N . Our results are presented in
Figure 3(a). The error is no longer appreciable when N ≥ 70.

To show the convergence on the second level of the COS method, we fix N = 100 and vary
the number Ñ . The error is estimated by comparing the value obtained using the two-level COS
method with the BS characteristic function of Bernard et al. (2011). The results are illustrated in
Figure 3(b).

Figure 3: Example of numerical convergence for a monthly point-to-point (MPP)
equity-indexed annuity within the Black-Scholes model using the COS method.
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(a) Error as a function of N
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(b) Error as a function of Ñ

In Figure 4, we illustrate the dependence of the EIA value and vega on the volatility of the
underlying index in the Black-Scholes model. As in Figure 2, we also computed the EIA value and
vega using Monte Carlo simulations with 10,000 replications.
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Figure 4: Monthly point-to-point (MPP) equity-indexed annuity value and vega
estimation within the Black-Scholes model using the COS method.
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(b) Vega estimation error

We once again see the agreement between the behavior of the two numerical approximations.
Monte Carlo simulations with a similar level of smoothness for either value of the EIA require
significantly more computational resources than the two-level COS method described here.

5.2 CGMY Example

5.2.1 Annual Point-to-Point

We use model parameters C = 25, G = 95, M = 95, and Y = 0.25 for the CGMY model. The
parameter set is chosen to be close to the parameter set calibrated by the S&P 500 index in found
in Carr et al. (2002). To determine the region [a, b] to use for the COS method, we estimate
the standard deviation of returns resulting from this price process. We use the COS method to
estimate the standard deviation by numerically computing both E(X2) and E(X) and the fact that
var(X) = E(X2)−E(X)2. Using the above CGMY parameters, we find that the standard deviation
of the distribution is approximately 12.61% and as a result use [a, b] = [−10σ, 10σ] ≈ [−1.26, 1.26].

In Figure 5, we show the convergence of the COS method to the product value of $997.4387 as
a function of the number of terms in the series.
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Figure 5: APP Error.
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Our results indicate that a relatively small number of terms is required – N ≥ 50 – to reach an
adequate level of precision.

5.2.2 Monthly Point-to-Point

For a MPP product with a 2% cap, the product value is $985.4757. For this case, we choose
[ã, b̃] = [−1.26/

√
12, 1.26/

√
12] = [−0.36, 0.36] and [a, b] = [−1.26, 0.24]. In Figure 6, we show

the convergence of the two-level COS method for different number of terms.
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Figure 6: Example of numerical convergence for a monthly point-to-point (MPP)
equity-indexed annuity within the CGMY model using the COS method.
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(a) Error as a function of N

20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

∼ N

(b) Error as a function of Ñ

For both levels, the COS uses roughly 50 steps to converge to the desired accuracy level.
As we have discussed before, the truncation range [a, b] should be set according to the size

of volatility. However, we observe that a larger size [a, b] typically results in a slower rate of
convergence. Though the there is a high rate of convergence in our examples, this number could
rise significantly if a larger truncation region is required.

6 Conclusions

In this paper, we proposed an algorithm that efficiently values point-to-point EIAs under general
Lévy-process based index returns by extending the COS method of Fang and Oosterlee (2008).
We expressed the value of an EIA contract as a series of characteristic function evaluations. We
presented several Lévy process examples, including the Black-Scholes model and the CGMY model,
to illustrate the effectiveness of the algorithm. We also showed how the algorithm can be used
to efficiently compute EIA market sensitivities, facilitating hedging of these instruments. Finally,
we presented a numerical analysis of the convergence and efficiency of the numerical valuation
approach suggested here.

Although we focused on the point-to-point design and gave particular examples of price pro-
cesses, our methodology is much more general. It can be applied to nearly any path-dependent
option embedded in an EIA and can be based on any price process that has a closed-form charac-

20



c©2014 SLCG Efficient Valuation of Equity-Indexed Annuities . . .

teristic function. Future research directions include the study of alternative bases for the expansion
as well as the application of our methodology to other annuity payoff structures.
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