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Abstract

Prior research on structured products has demonstrated that equity-linked notes
sold to retail investors in initial public offerings are typically issued at above their
fair market value. A particular type of equity-linked note – reverse convertibles –
embed down-and-in put options and offer investors relatively high coupon payments
in exchange for bearing some of the downside risk of the equity underlying the note.
We analytically study the magnitude of the overpricing of reverse convertibles – one
of the most popular structured products on the market today – within a stochastic
volatility model.

We extend the current literature to include analytical valuation formulas within
a model of stochastic volatility – the Variance Gamma (VG) model. We show
that these complex notes are even more overpriced than previously estimated when
stochastic volatility is taken into account. As a result of their complex payoffs and
the lack of a secondary market to correct the mispricing, reverse convertible notes
continue to be sold at prices substantially in excess of their fair market value.

1 Introduction

In this paper we present new valuation formulas for structured products with path-
dependent payoffs incorporating stochastic volatility. The methodology used in this paper
could be applied to any structured product with an embedded barrier option to determine
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the impact of volatility skew on product valuation. We study reverse convertibles mainly
because they are among the most popular structured products and because they provide
insight into the pricing and sales practices of other equity-linked structured products.

Reverse convertibles are short-term notes whose principal repayment is linked to a
stock, an index, or a basket of stocks. If the reference security’s price or level falls below
a pre-specified level - called the “trigger price” or “protection level” - during the term of
the note, investors may receive substantially less than the face-value of the notes. Reverse
convertibles are fundamentally notes composed of a coupon paying bond and an embedded
short put option.

Thus, while buy and hold investors in traditional short-term notes are only exposed
to the issuer’s credit risk, investors in reverse convertibles are also exposed to the risk of a
decline in the price of the reference security. Investors in reverse convertibles are partially
compensated for the risk of the embedded short put options with higher periodic coupons.
The risk of these embedded options was realized by many investors in late 2008 and early
2009 as some notes matured after substantial stock market declines.

By valuing over 2,000 reverse convertibles issued between 2001 and 2010, Deng et al
(2010) report that the average fair value of the products was just 93% of the offering

price. Szymanowska et al (2009) and Hernández et al (2007) find a similar level of
mispricing for this type of structured product. Henderson and Pearson (2010) estimate
that investors who purchased an aggregate of $2 billion of short-term SPARQS reverse
convertibles from Morgan Stanley in 69 offerings from 2001 to 2005 paid on average 8%
more than the securities’ true value.

Regulators have been paying attention to these products as well. The Financial In-
dustry Regulatory Authority (FINRA) Chairman Richard Ketchum commented, “Reverse
convertibles are complex investments which, like many structured products, often entail
significant risk of loss. For the typical retail investor, for instance, it would be unwise
to put a significant portion of life savings into riskier structured products such as re-
verse convertibles.”1 FINRA followed by issuing an “Investor Alert”2 and a “Regulatory
Notice”3 to highlight these concerns.

Reverse Convertibles accounted for approximately 6.0% ($2.34 billion) of SEC-registered
structured notes in 2012, 12.0% ($5.46 billion) in 2011 and 13.7% ($6.76 billion) in 2010
according to Bloomberg Briefs. Reverse convertibles stand as third most popular type
of SEC-registered notes, behind equity-linked notes (ELNs) and securities tied to rates.4

Much like reverse convertibles, ELNs are debt instruments that are tied to the the un-
derlying equity and expose investors to the issuers default risk. Typically ELNs are

1 www.finra.org/Newsroom/NewsReleases/2010/P120914
2 www.finra.org/Investors/ProtectYourself/InvestorAlerts/Bonds/P120883
3 FINRA Regulatory Notice 10-09, ”Reverse Convertibles”, February 2010.
4 Bloomberg Brief: Structured Notes, January 5, 2012, January 3, 2013 and January 10, 2013.
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principal-protected and the payoff at maturity depends upon the return of the underly-
ing equity and a participation rate.5 Rate-linked notes have a payoff that depend upon
interest rate(s). These notes could be teid to the value of a particular interest rate, the
difference of two interest rates, or on the steepness of a given yield curve.

Asset return volatilities are stochastic (Engel , 2004). Analysis of asset return dis-
tributions suggests that infinite-activity jump specifications are well suited to capture
the daily market value fluctuations of many financial assets (Wu , 2007). The variance
gamma (VG) model that we consider in this paper is an infinite-activity pure jump pro-
cess.6 Though there are many models of stochastic volatility, we chose to work with the
VG model due to its analytic tractability and the parsimony of its underlying model. The
VG process can be thought of as a geometric Brownian motion with a gamma time-change
and therefore could be seen as a generalization of the Black-Scholes model. The gamma
time-change is also the most simple continuous state-space analog of the Poisson process
(Jaimungal , 2004). The VG model is minimal since it leads to a characterization of the
two most important inherent biases in the Black-Scholes formula – lack of skewness and
excess kurtosis – using only one extra parameter.7

The VG model was first introducted in (Madan and Seneta , 1990) and was later
generalized to the CGMY model in Carr et al (2002) to include a set of models within
a convenient parameterization. Recently, the variance gamma model has been extended
and applied to study corporate defaults (Fiorani et al , 2007). Closed form solutions
for European options in other stochastic volatility models have been presented in the
literature. See, for example, a Heston stochastic volatility model (Heston , 1993), which
assumes dynamic variance follows a CIR process. Madan and Milne (1991) price Eu-
ropean call options in the symmetric VG economy for individuals with varying degrees
of risk aversion. Fourier based valuation methods on European call options have been
applied to the variance gamma model by Carr and Madan (1999).

Hernández et al (2007) present valuation formulas for several types of reverse convert-
ibles with embedded barrier options within the Black-Scholes model and find significant
underpricing of these instruments. Baule and Tallau (2011) studied the valuation of a re-
lated type of structured product – bonus certificates – in the context of the Heston model.
Bonus certificates are similar in structure to reverse convertibles. The main difference is
that bonus certificaties embedded down-and-out put option rather than a down-and-in
put option embedded in reverse convertibles. Baule and Tallau (2011) used simula-
tions to price the bonus certificates under the Heston model. Lipton (2001) presents
a closed form valuation of barrier options using a Green’s function approach within a

5 “Principal-protected” in this context means, at a minimum, the security returns the amount invested
(unless the issuer defaults).

6 These processes generate an infinite number of jumps within any finite interval.
7 See (Black and Scholes , 1973) and (Merton , 1976).
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special case of the Heston model where the asset price and volatility are assumed to be
uncorrelated. There is no closed-form solution for barrier options in the generic Heston
model. Several approaches to the valuation of barrier options can be found in the litera-
ture, including Wiener-Hopf factorization theory (Kudryavtsev and Levendorskǐi , 2009),
finite-difference methods (Itkin and Carr , 2010) and Fourier-based approaches (Fang and
Oosterlee , 2011). For an overview of the valuation of exotic options within Lévy models
in general, see Schoutens (2006).

The main contributions of our paper are as follows. We derive the first closed-form
valuation of reverse convertibles within the VG model. More precisely, we provide a
valuation formula for the down-and-in (barrier) put option embedded within the reverse
convertible. We first derive a reflection lemma specific to the stochastic volatility model
being considered. The reflection lemma maps the path-dependent payoff for a barrier
option to a path-independent payoff, conditional on a fixed gamma time. Using this
reflection lemma, we derive a solution for the barrier option within VG stochastic volatility
model. We isolate the pricing effect of the stochastic volatility assumption by comparing
the results of the VG model and the Black-Scholes model. We priced approximately
1,800 reverse convertibles issued by several large investment banks in 2010 and 2011. We
calibrated each model using options data collected for the underlying asset and analyzed
the impact of volatility skew on the value of reverse convertibles. We find that estimates of
the issue date overpricing in reverse convertibles increases when we incorporate stochastic
volatility.

This paper is organized as follows. We begin with a section introducing the variance
gamma model in detail, including the valuation of European call options. We then present
our analytic valuations, based upon a new lemma we present, of path-dependent options
within the VG model. We calibrate the model with options data and then price reverse
convertibles using the calibrated model. The final section is reserved for our conclusions.

2 Variance Gamma Model

2.1 Model Specifications

The variance gamma (VG) model is a pure-jump process that can also be written as a
Brownian motion with a gamma time-change. The first author to consider the effect of
discontinuous evolution of stock prices was Merton (1976). Monroe (1978) showed that
any semimartingale has a representation as a time-changed Brownian motion. Monroe’s
result implies that the log-returns of the underlying asset are normally distributed with
respect to financial time (which is positively correlated to business-activity time). The
financial clock ticks more quickly than the observable clock in times of high business
activity and ticks more slowly than the observable clock in times of low business activity
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(Jaimungal , 2004).
Let b(t; θ, σ) be a Brownian motion with drift θ and volatility σ and let γt(1, ν) be

a gamma process with mean rate 1 and variance rate ν. The VG process can then be
written as

Xt(σ, ν, θ) = b(γt(1, ν); θ, σ).

The spot price St at time t is given by the risk neutral process,

St = S0 exp(Xt(σ, ν, θ) + (r − q)t+ (t/ν) log Ω)

where Ω = 1 − θν − σ2ν/2. The probability density function for the stock price is given
by,

fXt(X) =

∫ ∞
0

1

σ
√

2πg
exp

(
−(X − θg)2

2σ2g

)(
gt/ν−1e−g/ν

νt/νΓ(t/ν)

)
dg (1)

where Γ is the usual gamma function. Conditioning on g, the distribution becomes a
normal distribution with mean θg and variance σ2g.

The Fourier approach to option valuation within Lévy models has been advocated
by Carr and Madan (1999). We present the valuation of European put options in the
appendix and explain why this approach falls short in the valuation of path-dependent
options considered in this manuscript. The characteristic function, defined as the Fourier
transform of the probability distribution function (φXt(u) = E[exp(iuXt)]), is given by

φXt(u) =

(
1− iθνu+

σ2ν

2
u2

)−t/ν
. (2)

In the limit ν approaches zero, one recovers the characteristic function corresponding to
the Black-Scholes probability distribution.

The VG process can also be written as a difference of two independent increasing
gamma processes,

Xt(σ, ν, θ) = γ+
t (µ+, ν+)− γ−t (µ−, ν−),

where

µ± =
1

2

√
θ2 + 2

σ2

ν
± θ/2,

ν± = (µ±)2 ν.

The proof of these equations is trivial once one derives the characteristic function for the
VG process. For an explicit proof, see Madan et al (1998). These formulae imply positive

5



and negative jumps in the price of an underlying asset have separate distributions (arrive
at different rates).

Explicit expressions for the first four central moments of the return distribution are
given by,

E[Xt] = θt

E
[
(Xt − E[Xt])

2
]

=
(
θ2ν + σ2

)
t

E
[
(Xt − E[Xt])

3
]

=
(
2θ3ν2 + 3σ2θν

)
t

E
[
(Xt − E[Xt])

4
]

=
(
3σ4ν + 12σ2θ2ν2 + 6θ4ν3

)
t

+
(
3σ4 + 6σ2θ2ν + 3θ4ν2

)
t2.

Notice that the sign of the skewness of the returns distribution is determined by θ. Fur-
thermore, the skewness is only non-zero for ν > 0.8 Kurtosis beyond that which is present
in the Black-Scholes model can also be accounted for through this model as shown above.

2.2 European Call Option Valuation

We present the European call option valuation here since there is some disagreement in
the literature about the correct formula.9 To fix ideas, we are considering a European call
option expiring T years from valuation with strike price K and continuously compounded
(constant) risk-free rate r. The underlying asset has initial price S0 and (constant) contin-
uously compounded dividend yield q. Conditional on the gamma time g, the call option
value can be computed by evaluating the integral

c(g) =

∫ ∞
−∞

(
e−rT max(ST −K, 0)

) exp
(
− (X−θg)2

2σ2g

)
σ
√

2πg
dX

= S0e
−rT

∫ ∞
k

(
ez − ek

) exp
(
− (z−(r−q)T−(T/ν) log Ω−θg)2

2σ2g

)
σ
√

2πg
dz

where z = log(ST/S0) and k = log(K/S0). The conditional call option value is given by

c(g) = S0e
−qTΩT/νe(θ+σ2/2)gΦ

(
d
√
g

+
θ + σ2

σ

√
g

)
−Ke−rTΦ

(
d
√
g

+
θ

σ

√
g

)
, (3)

8 The parameter ν is positive semi-definite. As ν tends to zero, the return distribution should match
the normal distribution. In agreement with expectations, in this limit the distribution has vanishing
skewness.

9 The formula for the European call option valuation takes the same form in most of the literature;
however, the dependence upon the model parameters varies widely. For three explicit examples of the
discrepancies, see Madan et al (1998), Ballotta (2010) and Jaimungal (2004).
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where

d =
1

σ

[
log(S0/K) + (r − q)T +

T

ν
log Ω

]
and Φ is the standard normal cumulative distribution function.

The unconditional call option value is derived by integrating the conditional call option
value as follows,

C(S0;K,T ) =

∫ ∞
0

c(g)

(
gt/ν−1e−g/ν

νt/νΓ(t/ν)

)
dg.

In terms of the function Ψ defined in Madan et al (1998)

Ψ(a, b, c) =

∫ ∞
0

Φ

(
a√
u

+ b
√
u

)(
uc−1e−u

Γ(c)

)
du, (4)

the unconditional call option value can be written as

C(S0;K,T ) = S0e
−qTΨ

(
d

√
Ω

ν
,
θ + σ2

σ

√
ν

Ω
,
T

ν

)
−Ke−rTΨ

(
d√
ν
,
θ

σ

√
ν,
T

ν

)
, (5)

where, again, Ω = 1 − θν − σ2ν/2. Madan et al (1998) show that the function Ψ can
be written in terms of degenerate hypergeometric functions of two variables and modified
Bessel functions of the second kind. We refer the reader to their paper for explicit formulae
for Ψ in terms of these special functions of mathematics.

3 Reverse Convertibles in the VG Economy

A reverse convertible pays the face-value of the note unless on some observation date
the price of the asset linked to the note falls below a certain trigger price. To fix ideas,
consider a $1, 000 face-value reverse convertible with T years to expiration, trigger price
H and initial underlying asset price S0. Let τ be the first time the asset price falls below
the trigger price. At maturity, the payoff of the reverse convertible is given by,

f(ST ) =

{
$1, 000 : τ > T
$1,000
S0
×min (ST , S0) : τ ≤ T

Figure 1 plots the payoff at maturity of the reverse convertible.
Reverse convertibles can be decomposed into three investments: a long position in a

zero coupon bond, a long position in a series of coupon payments and a short position in
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Figure 1: Payoff at maturity of a reverse convertible note with face-value
$1, 000, T years to expiration, trigger price H and valuation date asset price of
S0. The value of the payment at maturity for option prices between the initial
asset price and the trigger price is dependent upon the price of the underlying

asset during the observation period.

a down-and-in (barrier) put option. The formula for a reverse exchangeable decomposed
into these three components is presented in Hernández et al (2007).10

Assume the reverse convertible matures at time T , pays coupons Ci at time ti for
i = 1, 2, . . . , n. The value of a $1,000 face-value reverse exchangeable with trigger price
H and valuation date asset value S0 is given by

V (S0, H, T ) = $1, 000e−(r+D̄)T +
n∑
i=1

Cie
−(r+D̄)ti − $1, 000

S0

e−D̄TPdi(S0;H,S0, T ),

where D̄ is the CDS rate of the issuer and we have made the assumption that the strike
of the down-and-in put option is S0. Following (Baule and Tallau , 2011), we include the
issuer’s CDS rate in the pricing formula to reflect credit risk of the issuer.

We write the path-dependent payoff function above in terms of an equivalent static
payoff because there is evidence that the static hedge of a portfolio with path-dependent
options is preferred over a dynamic hedging due to lower transaction costs (Tompkins ,
1997). We focus on the VG model for this paper because we derive a reflection lemma
that allows for the conversion of path-dependent payoffs to equivalent static payoffs. The
lemma is similar to that found in Carr and Chou (1997).11

10 For a discussion of barrier options in the Black-Scholes model, see Hull (2011).
11 For a review of the use of static portfolios for the replication of portfolios with path-dependent payoffs,
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Lemma 1 In a Variance Gamma economy, suppose that X is a portfolio of European
options expiring at time T , conditional on the gamma time-change, with payoff:

X(ST |g) =

{
f(ST ) : ST ∈ (A,B)
0 : ST /∈ (A,B)

(6)

For H > 0, let Y be a portfolio of European options with maturity T and payoff:

Y (ST |g) =

{ (
ST
H

)p(g)
f(H2/ST ) : ST ∈ (H2/B,H2/A)

0 : ST /∈ (H2/B,H2/A)
(7)

where the power p(g) is given by

p(g) = −2

(
θg + (r − q)T + T

ν
log(1− θν − σ2ν/2)

σ2g

)
(8)

and the parameters {θ, σ, ν} characterize the VG economy, r is the constant continuously
compounded risk-free rate and q is the constant continuously compounded dividend yield.
Then X and Y have the same payoff whenever the spot equals H.

For a proof of the Lemma 1, see the appendix. This lemma allows us to write a
dynamic payoff in terms of an equivalent static payoff. This new result facilitates the
efficient valuation of barrier options within a model of stochastic volatility.

Since reverse convertibles are structured products with an embedded down-and-in put
option, we present the valuation formula for this type of barrier option. The value of
any other type of barrier option, including double barrier options, can in principle be
calculated based upon the methodology we develop below.

We consider a down-and-in put option on an asset with initial price S0 characterized
by a barrier H, strike K ≥ H and maturity T .12 We are working in the variance gamma
economy with parameters θ, σ and ν, (constant) continuously compounded risk-free rate
r and dividend yield q. Using the Lemma 1, the equivalent (static) payoff for the path-
dependent down-and-in put option is

f̂(ST |g) =

{
0 : ST ∈ (H,∞)

f(ST ) +
(
ST
H

)p(g)
f(H2/ST ) : ST ∈ (0, H)

(9)

see Carr and Chou (1997).
12 Usually a reverse convertible has an embedded down-and-in put option with strike K = S0. To keep

our results general, we do not impose such a restriction.
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where f(ST ) = (K − ST )+ is the usual European put option payoff. The down-and-in
put option value, conditional on the gamma time g, is found by integrating the equivalent
static payoff as follows

Pdi(S0;K,H, T |g) = Pdi(g) = e−rT
∫ ∞
−∞

f̂(ST |g)
exp

(
− (X−θg)2

2σ2g

)
σ
√

2πg
dX. (10)

Equation (11) results from evaluating the integral in Equation (10),

Pdi(g) = Ke−rTΦ

(
h
√
g
− θ

σ

√
g

)
− S0e

−qTΩT/νe(1−Ω)g/νΦ

(
h
√
g
− θ + σ2

σ

√
g

)
(11)

+

(
S0e

−qT

He−rT

)p
Ke−rTΩTp/νe(θp+p2σ2/2)g

×
[
Φ

(
h
√
g
− θ + σ2p

σ

√
g

)
− Φ

(
h1√
g
− θ + σ2p

σ

√
g

)]
−

(
S0e

−qT

He−rT

)(p−1)

He−rTΩT (p−1)/νe(θ(p−1)+(p−1)2σ2/2)g

×
[
Φ

(
h
√
g
− θ + σ2(p− 1)

σ

√
g

)
− Φ

(
h1√
g
− θ + σ2(p− 1)

σ

√
g

)]
,

where

h =
log
(
H
S0

)
− (r − q)T − T

ν
log Ω

σ

h1 =
log
(
H2

KS0

)
− (r − q)T − T

ν
log Ω

σ
= h− log(K/H)

σ

and Ω = 1− θν−σ2ν/2. We begin by simplifying the above equation using the definition
of p wherever possible,

Pdi(g) = Ke−rTΦ

(
h
√
g
− θ

σ

√
g

)
− S0e

−qTΩT/νe(1−Ω)g/νΦ

(
h
√
g
− θ + σ2

σ

√
g

)
(12)

+ Ke−rT
(
S0

H

)p [
Φ

(
h̄
√
g

+
θ

σ

√
g

)
− Φ

(
h̄1√
g

+
θ

σ

√
g

)]
− S0e

−qTΩT/νe(1−Ω)g/ν

(
S0

H

)p−2 [
Φ

(
h̄
√
g

+
θ + σ2

σ

√
g

)
− Φ

(
h̄1√
g

+
θ + σ2

σ

√
g

)]
,
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where

h̄ =
log
(
H
S0

)
+ (r − q)T + T

ν
log Ω

σ

h̄1 =
log
(
H2

KS0

)
+ (r − q)T + T

ν
log Ω

σ
= h̄− log(K/H)

σ
.

The unconditional option value follows from evaluating an integral of the form

Ψ̄(a, b, c, d) =

∫ ∞
0

Φ

(
a
√
g

+ b
√
g

)
ec/g

(
gd−1e−g

Γ(d)

)
dg. (13)

Here we use the series expansion of the exponential function to write the expression in
terms of the function defined in Equation (4),

Ψ̄(a, b, c, d) =
∞∑
n=0

cn

n!

(
Γ(d− n)

Γ(d)

)
Ψ(a, b, d− n). (14)

Each term in the series is a linear combination of hypergeometric functions and modified
Bessel functions as given by Madan et al (1998).

We write the unconditional down-and-in put option value in terms of this function Ψ̄
as

Pdi(S0;H,K, T ) = Ke−rTΨ
(

h√
ν
,− θ

σ

√
ν, T

ν

)
− S0e

−qTΨ
(
h
√

Ω
ν
,− θ+σ2

σ

√
ν
Ω
, T
ν

)
+Ke−rT

(
S0

H

)−2θ/σ2
[
Ψ̄
(

h̄√
ν
, θ
σ

√
ν, C1,

T
ν

)
− Ψ̄

(
h̄1√
ν
, θ
σ

√
ν, C1,

T
ν

)]
(15)

−S0e
−qT (S0

H

)−2 θ+σ
2

σ2

[
Ψ
(
h̄
√

Ω
ν
, θ+σ

2

σ

√
ν
Ω
, C2,

T
ν

)
−Ψ

(
h̄1

√
Ω
ν
, θ+σ

2

σ

√
ν
Ω
, C2,

T
ν

)]
where

C1 = log

(
H2

S2
0

){
(r − q)T + T

ν
log Ω

ν

}
and C2 = ΩC1.

This is an analytic solution for the value of a path-dependent option within the VG model.

4 Valuation of Reverse Convertibles

4.1 Model Calibration

Our calibration of the VG model follows closely that of Madan et al (1998). For the
issue date of each reverse convertible, we calibrated the parameter σ in the Black-Scholes
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(BS) model and the parameters {σ, θ, ν} of the VG model based upon contemporaneously
traded at-the-money put options of the underlying asset. To be precise, we used the traded
European put options that were close to at-the-money. For example, if the underlying
asset had a price of S0 at closing the day before the valuation date, then we used options
with strike prices in the range of 0.75S0 and 1.25S0. We considered options of all available
maturities.

For the BS model, we determined the optimal implied volatility given the options data
based upon the squared error between market prices and BS model prices. The implied
volatilities we computed are very close to the at-the-money implied volatilities provided
by other sources such as Bloomberg. For the variance gamma model, we followed Madan
et al (1998) and minimized the quantity,

k =

√√√√ 1

M

M∑
i=1

(log(wi)− log(ŵi))
2

where wi is the observed market price of the ith option and ŵi is the model price with error
model wi = ŵi exp(ηεi − η2/2) where {εi} are normally distributed with unit variance.
For put option prices in the VG model, we used either the integration approach as in
Section 2.2 or a more efficient Fourier closed-form Equation (19). To exclude non-positive
parameters σ, ν in the VG model, we have used exponential transformations suggested in
Madan et al (1998). For the results of the calibration, see Table 1.

Table 1: Fit results for parameter values within the BS and VG models. We
present the mean value for each parameter, along with the standard deviation.

Parameter
Mean Standard
Value Deviation

Black-Scholes Model
σ 0.453 0.096

Variance Gamma Model
σ 0.425 0.125
θ -0.705 0.653
ν 0.108 0.077

4.2 VG and BS Valuations

We collected 1,817 reverse convertibles issued in 2010 and 2011 by four large investment
banks. Barclays issued 1,324, JP Morgan issued 404, UBS issued 74 and Morgan Stanley
issued 15 of the notes. The average issue size for those notes is $1,185,163.
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After we calibrated the parameters of the models and we obtained each issuer’s CDS
rates. As a proxy for risk-free rates, we used treasury yields of approximately the same
maturity as the reverse convertible. We also obtained the dividend yield for each of the
underlying assets as of the offering dates from Bloomberg.

As an example, consider the reverse convertible (linked to the stock price of Patriot
Coal Corporation (PCX)) issued by Barclays on January 21, 2010 with total principal
amount $1 million to mature on April 21, 2010.13 On the January 15, 2010 pricing date,
Barclays’ CDS rate was 42 basis points, the risk-free rate was 0.25%, the dividend yield
of the underlying asset was 0% and the asset price was $20.20. The note paid a monthly
coupon with annualized rate of 19%. The trigger price during the three month period
was $14.14 – 70% of the initial asset price. The calibrated implied volatility for the
Black-Scholes model is 64.18% and the calibrated parameters for the variance gamma
model are (σ = 66.01%, θ = −0.7799, ν = 0.0500). Given the calibrated parameters,
we plot in Figure 2 the probability density function for the distribution of log returns
(RT = log(ST/S0)). In the Black-Scholes model, the return distribution is normal. In the

Figure 2: The probability density function for the Black-Scholes model and
variance gamma model as a function of log returns (RT = log(ST/S0)) for the

three month period.
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VG model, the returns distribution exhibits higher skewness and kurtosis (fatter tails).
The transformed equivalent payoff function f̂(x|g) for the VG model, f̂(x) for the BS

model and f(x) for a standard put option is illustrated in Figure 3. Both equivalent payoff

13 See SEC filing http://www.sec.gov/Archives/edgar/data/312070/000119312510007443/d424b2.htm
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functions are similar and truncated at the trigger price $14.14. The equivalent payoff for
the BS model is larger than the VG model between $10 and $14.

Figure 3: Static payoff function for f̂(x|g = 0.5) in the VG model along with
f̂(x) in the BS model.

The value of the reverse convertible is determined by integrating the payoff function
with the appropriate probability distribution function. For the VG model, there is one
more layer of integration to remove the gamma time g. Conditional on g the price function
Pdi(g) as in Equation 11 is plotted in Figure 4. The price of the down-and-in put option
is $1.94 in the BS model and $2.01 in the VG model. For each $1,000 face-value reverse
convertible note purchased, the investor received a note worth $949.86 as calculated in
the BS model and $947.40 as calculated in the VG model.

The table below summarizes the main results of our valuation of the 1,817 reverse
convertibles in our sample. On average, an investor recieved $941.94 within the BS model
and $940.74 within the VG model per $1,000 dollar invested. The net effect of stochastic
volatility is to increase the value of the embedded barrier option and therefore to decrease
the issue date fair market value of the structured product.

5 Concluding Remarks

We have directly integrated the probability distribution function with an equivalent payoff
function to value the down-and-in put option embedded within reverse convertibles. An

14



Figure 4: Conditional down-and-in put option value as a function of the g,
Pdi(g). The ratio of the trigger price to the valuation date asset price is 70%.
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Table 2: Results of reverse convertible valuation by issuer for the Black-Scholes
model and variance gamma model. The average BS and VG values are

normalized to notes in units of $1, 000.

Issuer
Number Average Black- Average Variance
Issued Scholes Value Gamma Value

Barclays 1,324 $935.06 $934.44
JP Morgan 404 $960.56 $957.65

UBS 74 $959.63 $958.46
Morgan Stanley 15 $960.07 $956.80

alternative method is a Fourier-based approach using readily available Lévy measures.14

The benefit of using the Fourier-based approach is the applicability to many different
stochastic volatility models. We have included a detailed derivation of the valuation
of a European put option in the Appendix following closely the approach of Carr and
Madan (1999). The Fourier-based approach has two limitations in this context. The first
limitation is that the valuation of barrier options requires the derivation of “incomplete”
characteristic functions due to the truncation of the payoff function at the trigger price.
The second limitation is that we have only presented the reflection lemma for the VG
economy, and would therefore need to derive a similar result for other stochastic volatility

14 For a veritable catalog of Lévy measures, see Wu (2007).

15



models. We see this as a direction for future research.
In this paper, we studied the valuation of one of the most popular varieties of equity-

linked structured products – reverse convertibles. We studied these products in the con-
text of a particular model of stochastic volatility. Within the variance gamma (VG)
model, we derived a reflection lemma similar to that found in the Black-Scholes model.
We used this reflection lemma to convert the path-dependent payoff of the reverse con-
vertible to a static payoff. We outlined a procedure for the valuation of barrier options
commonly embedded in structured products and presented a closed-form valuation for-
mula for down-and-in put options.

Using our new formula, we compared the value of reverse convertible notes issued
between 2010 and 2011 predicted by the Black-Scholes model and the VG model. The
overall effect of stochastic volatility is to increase the value of the embedded put option
and therefore decrease the value of the note. The average value of a $1,000 face-value
reverse convertible note issued during this time period was $941.90 in the Black-Scholes
model and $940.70 in the variance gamma model.

A Proof of Lemma

Proof: Assuming the spot equals H, we can write the asset price as

ST = H exp (X +mT ) ,

where m = (r − q) + (1/ν) log(1− θν − σ2ν/2). The value of portfolio X is given by

V (X) =

∫ B

A

∫ ∞
0

f(ST )pdf(ST |g)dg
dST
ST

=

∫ log(B/H)−mT

log(A/H)−mT

∫ ∞
0

f(H exp(X +mT ))
exp

(
−(X−θg)2

2σ2g

)
σ
√

2πg
µ(g)dgdX (16)

where µ(g) = (g/ν)T/ν−1e−g/ν/Γ(T/ν). Making the change of variable

H exp(X +mT ) =
H2

H exp(X̂ +mT )

results in the following

∫ log(H/A)−mT

log(H/B)−mT

∫ ∞
0

f

(
H

exp(X̂ +mT )

)
exp

(
−(X̂+2mT+θg)2

2σ2g

)
σ
√

2πg
µ(g)dgdX̂.
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Completing the square in the exponent and simplifying the result brings us to

⇒
∫ log(H/A)−mT

log(H/B)−mT

∫ ∞
0

f

(
H

exp(X̂ +mT )

)(
exp(X̂ +mT )

H

)p(g) exp
(
−(X̂−θg)2

2σ2g

)
σ
√

2πg
µ(g)dgdX̂

=

∫ H2/A

H2/B

∫ ∞
0

f

(
H2

ŜT

)(
ŜT
H

)p(g)

pdf(ŜT |g)dg
dŜT

ŜT
.

where

p(g) = −2

(
θg + (r − q)T + T

ν
log(1− θν − σ2ν/2)

σ2g

)
. (17)

This result shows that portfolio Y and portfolio X have the same value whenever the spot
equals H.

B Option Valuation using Fourier Transform

Here we present the Fourier transform method of the valuation of a plain-vanilla European
put option in the VG model. In this section, we follow closely the approach of Carr and
Madan (1999). Using the definition of the characteristic function,

φT (u) =

∫ ∞
−∞

eiuzqT (z)dz =

(
1− iθνu+

σ2νu2

2

)−T/ν
,

one can write the value of the plain-vanilla European put option as

PT (k) =

∫ k

−∞
S0e

−rT (ek − ez)qT (z)dz,

where k = log(K/S0).
In the limit K � S0, the put option approaches Ke−rT . The put option pricing

function is therefore not square-integrable and we need to regulate the divergent integral.
Define the following,

pT (k) ≡ e−αkPT (k)

for α > 0. The Fourier transform of pT (k) is then

ψT (v) =

∫ ∞
−∞

eivkpT (k)dk → PT (k) =
eαk

2π

∫ ∞
−∞

e−ivkψT (v)dv.
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Upon explicit computation of the Fourier transform

ψT (v) =

∫ ∞
−∞

eivk
∫ k

−∞
S0e

−rT (e(1−α)k − ez−αk)qT (z)dzdk

= S0e
−rT

∫ ∞
−∞

∫ ∞
z

(e(1−α+iv)k − ez−(α−iv)k)qT (z)dkdz

= S0e
−rT

∫ ∞
−∞

e(1−α+iv)z

(
1

iv − α
− 1

iv + 1− α

)
qT (z)dz

= S0e
−rT

(
φT (v − (1− α)i)

(iv − α)(iv + 1− α)

)
, (18)

one arrives at the following price for a plain-vanilla European put option

PT (k) =
eαk

2π

∫ ∞
−∞

S0e
−rT

(
φT (v − (1− α)i)e−ivk

(iv − α)(iv + 1− α)

)
dv. (19)

Taking a similar approach to determine a closed-form valuation for the price of a barrier
option runs into trouble in a number of ways. For example, the domain of integration
requires the derivation of an “incomplete” characteristic function,

φ(y)(u) = E(y)[eiuX ] ≡
∫ ∞

0

∫ y

−∞

exp
(
− (X−θg)2−2iσ2guX

2σ2g

)
σ
√

2πg
dX

(
g−T/ν−1e−g/ν

νT/νΓ(T/ν)

)
dg

=

(
1− iθνu+

σ2νu2

2

)−T/ν
×

∫ ∞
0

1

2

(
1 + erf

(
y − θg − iuσ2g

σ
√

2g

))(
ḡT/ν−1e−ḡ/ν

νT/νΓ(T/ν)

)
dḡ

where erf(x) is the error function and ḡ = (1− iθνu+ u2σ2ν
2

)g. This result, along with the
fact that the equivalent static payoff function depends on the gamma time-change, makes
finding a closed form solution for the barrier option within the VG model unlikely using
the Fourier transform approach.
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